Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 14: 1038651, 2023.
Article in English | MEDLINE | ID: covidwho-2306561

ABSTRACT

Background: Regarding the global coronavirus disease 2019 (COVID)-19 pandemic, kidney clear cell carcinoma (KIRC) has acquired a higher infection probability and may induce fatal complications and death following COVID-19 infection. However, effective treatment strategies remain unavailable. Berberine exhibits significant antiviral and antitumour effects. Thus, this study aimed to provide a promising and reliable therapeutic strategy for clinical decision-making by exploring the therapeutic mechanism of berberine against KIRC/COVID-19. Methods: Based on large-scale data analysis, the target genes, clinical risk, and immune and pharmacological mechanisms of berberine against KIRC/COVID-19 were systematically investigated. Results: In total, 1,038 and 12,992 differentially expressed genes (DEGs) of COVID-19 and KIRC, respectively, were verified from Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively, and 489 berberine target genes were obtained from official websites. After intersecting, 26 genes were considered potential berberine therapeutic targets for KIRC/COVID-19. Berberine mechanism of action against KIRC/COVID-19 was revealed by protein-protein interaction, gene ontology, and Kyoto Encyclopedia of Genes and Genomes with terms including protein interaction, cell proliferation, viral carcinogenesis, and the PI3K/Akt signalling pathway. In COVID-19 patients, ACOX1, LRRK2, MMP8, SLC1A3, CPT1A, H2AC11, H4C8, and SLC1A3 were closely related to disease severity, and the general survival of KIRC patients was closely related to ACOX1, APP, CPT1A, PLK1, and TYMS. Additionally, the risk signature accurately and sensitively depicted the overall survival and patient survival status for KIRC. Numerous neutrophils were enriched in the immune system of COVID-19 patients, and the lives of KIRC patients were endangered due to significant immune cell infiltration. Molecular docking studies indicated that berberine binds strongly to target proteins. Conclusion: This study demonstrated berberine as a potential treatment option in pharmacological, immunological, and clinical practice. Moreover, its therapeutic effects may provide potential and reliable treatment options for patients with KIRC/COVID-19.


Subject(s)
Berberine , COVID-19 , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Berberine/pharmacology , Berberine/therapeutic use , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney
2.
Front Immunol ; 13: 892350, 2022.
Article in English | MEDLINE | ID: covidwho-1933680

ABSTRACT

Patients with Hantavirus-caused epidemic hemorrhagic fever (EHF) are at risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is currently no validated EHF/SARS-CoV-2 strategy. Several studies have recently shown Puerarin, a natural product, has potent antiviral properties. The goal of present study was to determine the mechanism of puerarin in patients with EHF/COVID-19. We use network pharmacology and bioinformatics to investigate the possible pharmacological targets, bioactivities, and molecular mechanisms of puerarin in the treatment of patients with EHF/SARS-CoV-2. The study investigated the pathogenesis of COVID-19 and EHF and the signaling pathway impacted by puerarin. 68 common genes linked to puerarin and EHF/SARS-CoV-2 were discovered during the investigation. By using protein-protein interaction (PPI) network, we identified RELA, JUN, NF-B1, NF-B2, and FOS as potential therapeutic targets. The bioactivity and signaling pathways of puerarin have also been demonstrated in the treatment of EHF and COVID-19. According to present study, puerarin could reduce excessive immune responses and inflammation through the NF-B, TNF, and HIF-1 signaling pathways. This study explored the potential therapeutic targets and mechanisms of Puerarin in the treatment of EHF/COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coinfection , Hantavirus Infections , Orthohantavirus , Humans , Isoflavones , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL